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Extinction of a nonadiabatic flame propagating through spatially periodic shear flow
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It is shown that the nonadiabatic premixed flame propagating through zero-mean, time-independent,
periodic shear flow is quenched provided the flow-field intensity exceeds a certain critical level. In the
nearly quenched flame at the points of its highest stretch, where the flame temperature is lowest, the
stretch intensity appears to be independent of the flow scale, provided the latter is large enough. It is ar-
gued that the results obtained may be relevant to the experimentally known phenomenon of flame

quenching by turbulence.

PACS number(s): 47.70.Fw, 82.40.Py

I. INTRODUCTION

An interaction between the flame and large-scale ed-
dies of the turbulent flow field results in the extension of
the flame interface and thereby in the burning rate
enhancement. Yet it has long been observed that for
each gaseous premixture there is a certain level of tur-
bulence at which the speed of the premixed flame reaches
its maximal value. A further increase in the flow intensity
leads to a drop of the flame speed, interface fragmenta-
tion, and eventual extinction of the flame [1-12]. Figure
1 depicts the typical dependence of the flame speed on
the turbulence flow intensity. It has been suggested that
the phenomenon is likely to be controlled by the flame
stretch [6—12]. Such an interpretation, however, needs a
qualification. The stretch indeed is known to reduce the
reaction rate, provided it is positive [13]. Otherwise, the
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FIG. 1. Turbulent flame speed V versus turbulent flow inten-
sity A. The level of turbulence was controlled by four high
speed fans within the explosion vessel [3].
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burning will be enhanced by the stretch rather than
suppressed. In turbulent flow the sign of the stretch al-
ternates along the front. Thus it is not at all clear how
the inhibiting influence of the stretch occurring in some
parts of the flame will dominate the other parts of the
flame and result in the overall flame extinction. More-
over, there are serious indications that, while the stretch
certainly plays an important role, in order to ensure the
complete extinction, some level of heat losses is in-
dispensable [14-17]. The stretch idea of flame extinc-
tion, therefore, still involves questions, the elucidation of
which calls for a more fundamental approach.

The principal difficulty in modeling turbulent combus-
tion, as in many other turbulence related problems, is the
wide range of spatiotemporal scales involved. It seems
intuitively plausible, however, that the multiple-scale na-
ture of the flow field is not crucial for the physics of flame
extinction which may well be described within the frame-
work of a rather simple one-scale flame-flow interaction
scheme. As has been shown in our previous studies of the
problem, one may gain a good deal of apparently relevant
information even when the underlying flow is chosen as
time independent, space periodic, and unidirectional
[17-20]. It was found that the response of the adiabatic
flame speed to the gradual increase of the periodic flow
intensity is rather nontrivial. For long-wavelength
periodic flows there exists a certain critical amplitude
above which the combustion wave undergoes a jumpwise
(hysteresic) transition from a high- to a low-speed propa-
gation mode. For gasless systems this transition may be
accompanied by a partial extinction [17]. Yet complete
extinction within a purely adiabatic picture does not
seem feasible no matter how strong the flame distortion
and stretch.

The present paper is intended as a further exploration
of the issue and its extension over the case when the re-
quirement of adiabaticity is relaxed and the pertinent
model is allowed to incorporate the effects due to
volumetric heat losses. It is quite understandable that
strong enough heat loss may suppress any exothermic
flame whether there is a background flow or not. The
question is whether or not an intensive enough flow field
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may destroy a moderately nonadiabatic flame maintain-
able in the quiescent premixture.

II. MATHEMATICAL MODEL

We employ the following framework for the model: a
one-step irreversible reaction with Arrhenius’s kinetics
and large activation energy; the reactant composition is
far from stoichiometric; constant density and transport
properties; a time-independent, unidirectional, and
periodic flow field. In the present model we also include
the effect due to radiative heat loss.

With these assumptions the nondimensional set of
equations for temperature and concentration in the frame
of reference attached to the corrugated flame (Fig. 2)
reads

v-VT=V’T +(1—0)eV/2PT=Vg —h(T*~0*), (2.1)
v-VC=Le 'V?C —¢!!/2BT V5 | (2.2)

where 8¢,=\/1+(p§8(x —¢@) is the surface 8§ function,
x =¢(y) is the flame interface (location of the reaction
zone), and

v=(W(ky),0) with W(ky)=V + A cosky . (2.3)

Here T, 3, and o are the local, activation, and initial tem-
peratures, respectively, in units of the adiabatic tempera-
ture of combustion products; C is the local concentration
of the deficient reactant in units of its initial value in a
fresh mixture; (x,y) are the spatial coordinates in units of
the flame thermal width; v is the flow-field velocity in
units of the planar adiabatic flame speed; Le is the Lewis
number. A is the prescribed amplitude (intensity) of the
flow field and V is the speed of the corrugated flame,
which is to be determined alongside T, C, and ¢ in the
course of the solution of the problem. h (T*—o*) is the
term responsible for the readiative heat losses, with A be-
ing the scaled Stefan-Boltzmann constant (heat loss inten-
sity).

In this formulation, the deficient reactant is assumed to
be completely used up within the reaction zone. Hence

W =V + Acos(ky)

z = 2(y)

flame

fresh

burned

FIG. 2. Schematic view of a corrugated flame stabilized in a
periodic shear flow v=(V + 4 cosky,0).

C(x,y)=0 at x >e@(y) . (2.4)

Far from the reaction zone the following boundary condi-
tions are imposed:

C(—,y)=1, T(tw,y)=0 . (2.5)

III. ASYMPTOTIC ANALYSIS

As in our previous paper [18], the problem (2.1)-(2.6)
is analyzed within the framework of the so-called slowly
varying flame (SVF) formulation, which, for all its in-
herent limitations, often proves to be the only available
analytical means to tackle essentially nonlinear and mul-
tidimensional premixed flame systems.

The SVF approach is known to be most effective when
the typical length scale of the flow k ~! is large, while the
heat loss intensity 4 is small, and both are related to the
large activation energy S8 as

k~h~B~! (B>>1). (3.1)

It is precisely in this parameter range, as we shall see
below, that the extinction of the corrugated flame occurs.

The algebra involved in SVF perturbative machinery is
well known and will not be reproduced here. The in-
terested reader may refer to some of the original papers
on the subject [21-24] and the book by Buckmaster and
Ludford [25]. The final asymptotic relations for the flame
interface x =@(y) and its temperature Ty at the leading-
order approximation read

;mm% L |+ (vnlIn(v-n)+BhT(a)=0, (3.2)
)
Tp=1+<In(v-n) . 3.3)
B
Here

n=(1,—¢,)/V 1+¢2 , r=(g,,)/V 1+¢2, (3.4)

I'o)=20*1—0)+30%(1—0?)
+2o(1—0?)+i(1—0*), 3.5

p=1B(1—o)1—Le™ 1) (3.6)

is the truncated (SVF) version of the Markstein number
(see, e.g., [28]).

VT

v-n

(3.7

— 4
K=pu(v n)ds

is the so-called flame stretch, characterizing the local
response of the normal flame speed to the distortion of
the flame structure due to its curvature and the flow-field
divergence (see, e.g., [26], where one may find more gen-
eral expressions pertinent to time-dependent and three-
dimensional systems).

For the relations (3.2) and (3.3) to be meaningful,

(vn)=W(ky)/V 1+¢? (3.8)

should be positive. Hence
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FIG. 3. Corrugated flame
speed V versus periodic flow am-
plitude A4 for (a) a=0, (b)
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at £=¢, (0=n=N=15),
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V>4. (3.9)  profiles p(y) and W (ky). As a result one obtains
_Beyond this regiop the equilibri.um state either fails to ex- Loy, =W(ky) ln[\/1+_<p§ /W (ky)]
¢ or the fame nefce prtaly moves bckrd R W
" For further analysis it is convenient to recast 3.2, r 7128 V1T /W o], G0
(3.3), and (3.7) in terms of the interface and velocity K=pe, Wky)/(1 +¢l) . (3.12)

T T T T T
0.00 0.31 0.62 0.94. 1.25 1.57 1.88 2.19

FIG. 4. Flame interface
profile ®(7n), O<ny<m, for
A=A%1—n/50), n=0,1
y ..., 15, (a a=0, e=1
(A49=0.774, V?=0.789); (b)
a=0,1, e=1 (A9=0.433,
V9=0.684). The interface is
maximally extended (lower
curve) at 4 =0.690, ¥V =0.919
for a=0 and at A4 =0.360,
V' =0.802 for a=0.1.
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FIG. 5. Mean value of the
stretch K’ at the quenching
point versus the flow length
scale ¢! for (a) @=0 and (b)
a=0.1.
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IV. EQUATION FOR THE FLAME INTERFACE
AND ITS SOLUTION

Introducing the new scaled variables and parameters
n=ky , G(n)=¢,,
©r=1B(Tr—1) (reduced flame temperature) ,
e=pk (scaled wave number), @0
a=pBhT (o) (scaled heat loss intensity) ,
relations (3.10)—(3.12) become

eG,=W(n)In[V1+G*/W(n)]—a(1+G*)/W(y) ,

4.2)
Op=—I[V1+G*/W(n)], 4.3)
K =¢G,W(n)/(1+G?), (4.4)

T T 1
16.08 18.04 20.00

where W(n)=V + 4 cosn. Since W, vanishes at =0
and 1, it is natural to impose the same conditions on the
flame slope G () as well, i.e.,

G(0)=0, G(m)=0. 4.5)
The problem (4.2) and (4.5) is clearly overdetermined
since here one has two boundary conditions for the first-
order ordinary differential equation. Thus one ends
up with a nonlinear eigenvalue problem where
V =V (A,¢,a) plays the role of the unknown parameter.

Due to its nonlinear nature, the problem (4.2) and (4.5)
is not accessible to analytical treatment. Yet it may be
rather efficiently solved numerically. The basic idea of
the adopted computational algorithm, which is a marked
improvement over the standard shooting method used in
[18], is as follows.

Setting 4 =0, one integrates Eq. (4.2) subject to the
initial condition G(0)=0 to obtain the function

0.25

FIG. 6. Mean value of the re-
duced flame front temperature
O versus the periodic flow am-
plitude 4 for (a) =0 and (b)
a=0.1 at e=1, 0.5, 0.35, and
0.25.
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FIG. 7. Periodic flow ampli-
tude A7=(1) and corrugated
flame speed V?—(2) at the
quenching point versus the flow
length scale € ! for (a) @=0 and
(b) a=0.1.

G,(m)=g (V). Solving the equation g (¥)=0, one deter-
mines the intersection points between the sought for
curve R (¥, A)=0 and the axis 4 =0. These points are
localized within the interval 0 < ¥V < 1. Thereupon, start-
ing from the found intersections, one gradually con-
structs the rest of the curve R (V, A)=0. To ensure the
desired resolution, an appropriate adaptive algorithm is
employed. At small € the problem (4.2) and (4.5) becomes
stiff, acquiring an e-wide boundary layer near y =0. To
maintain an acceptable accuracy and without introducing
too many mesh points, Eq. (4.2) was solved with a vari-
able step.

A. The adiabatic case (a=0)

Figure 3(a) depicts the speed V of the corrugated flame
as a function of the flow intensity A4 for different wave
numbers. For any € there is a threshold (quenching point)
A9= A9¢) above which the equilibrium solution in the

IW(r)

region V > A does not exist. Shorter-wavelength (larger-
€) solutions go out at lower amplitudes A than the
longer-wavelength solutions. There are two solutions for
each A near the quenching point. Apparently only the
upper one is physically feasible (stable).

Figure 4(a) shows several flame interface configurations
P(n)= f J(G(7)d7 for a variety of amplitudes 4. Quite
in keeping with the V' ( 4) dependence [Fig. 3(a)], as 4
increases, the flame interface initially expands and then,
approaching the quenching point A9, shrinks. At =0,
where W=V + A, the reduced flame temperature Oy
(4.1) reaches its highest value (above zero), while at n=r,
where W =V — A, O is lowest. For the stretch K the sit-
uation is the opposite. It is strongest at == and weak-
est at m=0. For positive u, the mean value
K= f Ks/ f ds appears to be negative and apparently
gradually vanishing as ¢ ' — oo (Fig. 5). The mean of the
reduced temperature ©; ' = [©ds/ [ ds is also negative

(8)

FIG. 8. Local flame speed
W4mw)=V9i— A? at the quench-
ing point versus the flow length

(a)

scale ¢! for (a) =0 and (b)
a=0.1.

-
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FIg. 9. Local stretch K1) at
the quenching point versus the
flow scale ¢! for (a) =0 and
(b) a=0.1.
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and rapidly drops with the increasing 4 (Fig. 6). Figure
7(a) yields the dependences of 4 and V on the flow scale
¢! evaluated at the quenching point g. For large length
scales £ 1, at the flame’s weakest point (=), the flame
speed W9w)=V79— A7 and consequently the stretch
K1) approach constant values, i.e., appear to be scale
independent [Figs. 8(a) and 9(a)]. It is interesting that the
scale independence holds not only for the quenching
points A9, but for the points of maximal stretch as well,
where the stretch invariance settles even at shorter length
scales [Fig. 10(a)].

B. The nonadiabatic case (a>0)

As one may see from Fig. 3(a), at a=0 each of the
curves R (V, A)=0 touches the boundary ¥V = A below
which, as was mentioned earlier, the SVF formalism un-
derlying Eq. (4.2) collapses. In fact, there is a continuous
transition of each of the curves R (V, A)=0 into the
V < A region [17]. Thus, although for 4 > A7 the SVF
solution disappears from the ¥V > A4 region, the actual
flame does not go out but merely passes to a new propa-

K (m)

T 1
lSI.DS 18.04 20.00

gation regime where at some parts of the flame its speed
W relative to the underlying flow happens to be negative.

The incorporation of heat losses (a>0) changes the
picture dramatically. Figures 11 and 3(b) show the flame
speed V versus the flow intensity A4 for different levels of
heat losses a at a fixed wave number ¢ and for different
wave numbers at a fixed heat loss. Here, even for very
small a the corresponding curves R (¥, A)=0 remain en-
tirely within the V' > A region. At a—1/2e¢~0.18 the
curves R (V, A)=0 gather at the singular point 4 =0,
V =1/V'e ~0.6, which is precisely the classical flamma-
bility limit of a planar flame. In this situation reading the
nonexistence as an actual extinction becomes much more
credible. Additional arguments in favor of such an inter-
pretation will be presented in the next section.

Figure 4(b) shows several interface configurations of a
nonadiabatic flame. For relatively high a and € at 4
close enough to the quenching point 49 the flame buck-
les near n=m. While affecting the local stretch K (),
which may change its sign, this does not cause a qualita-
tive alternation in the temperature distribution along the

FIG. 10. Local flame stretch
K (1) versus periodic flow ampli-
tude 4 for (a) a=0 and (b)
a=0.1 at €e=1, 0.5, 0.35, and
0.25.

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

2.4 2.7 3.0
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N\

FIG. 11. Corrugated flame
speed V versus periodic flow am-
plitude A for different levels of
heat loss a at £=0.25 (long
waves) and e=2.5 (short waves).
a=0.02n (n =0,...,9).

Vﬁd
®)
e >
74
59) &
o a=0.1
. A

flame interface. Figure 6(b) shows the mean temperature
drop with increasing 4.

Figures 7(b), 8(b), and 9(b) present A9, V9, W), and
K %) versus the length scale e ! of @=0.1. As in the
adiabatic case, W) and K %) become length-scale in-

dependent for larger £ .

V. THE QUASI-ONE-DIMENSIONAL MODEL

Formally speaking, the found effect merely asserts the
disappearance of the periodic solution of Eq. (4.2), but
does not say much about what actually happens to the
system beyond the existence point. Does the flame indeed
go out or is the matter more involved? The most
straightforward way to resolve this question is clearly
through the direct numerical simulation of the pertinent
reaction-diffusion system. With modern computational
facilities this is quite a feasible albeit a challenging pro-
ject. In this paper, however, we adopted a somewhat less
rational and direct yet technically much more accessible
“sandwich model” approach originally employed for the

adiabatic case [17]. In this approach, the original two-
dimensional reaction-diffusion-advection system is re-
garded as a pile of alternatingly sliding reacting layers.
The latter, in turn, are treated as one-dimensional sys-
tems with a volumetric mechanism of the diffusive-
thermal interaction. The problem is thus reduced to a set
of four spatially one-dimensional equations for T, and
C .. associated with moving layers labeled by * (Fig. 12).

d

~—{)
[

—A—=—e
~—{e)

fresh

)

FIG. 12 Schematic view of a premixed flame moving through
a pile of alternatingly sliding reactive layers.
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To gain some idea of the possible influence of heat loss
the discussion will be limited to the simplest case of “gas-
less” (Le= ) combustion spreading through a pile of
sliding layers of solid fuel [17]. In order not to deal with
the narrow reaction zone and hopefully without much de-

I. BRAILOVSKY AND G. SIVASHINSKY s1

premixture its temperature o is set at zero. The heat loss
term is appropriately modified as well. One thus ends up
with a rather compact and computationally convenient
model, which at the laboratory frame of reference reads

triment to the qualitative understanding of the oT . AT, T, )
phenomenon, the normally exponential temperature 3t +4 ax = ox2 +kAT+—TL)+Q —hTy ,
dependence of the reaction rate is replaced by the quadra-
tic one. Accordingly, to prevent a reaction in the cold (5.1
24
2 Cs
]
& &- (a)
(S
S ',
o /\Q:t
-120.0 -80.0 -40.0 0.0 0.0 80.0 T 120.0
FIG. 13. Temperature T, con-
@ | centration C, and reaction rate
Q profiles at k=0.3 and
< (b) h=0.06 for (a) A4=0, (b)
Sk A=0.14, (¢) A=0.18, (d
© A4=0.19, and () 4 =0.195.
R = e oo B0 g %0
<
S (c)
o
leakage
-120.0 -8&‘).0 -4[‘1.0 16.0 80.0 X XZ‘0.0
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FIG. 13. (Continued).
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& S Cs (e)
O «— C-

-] Ty =0 Q:=0

extinction

ey = oy o p 2oz o

oC, oC, C _ does not leak, the speed V of a well settled flame may
=—Q0,, Q.=C.T} (5.2) P
ar 7 ox £y xS : be determined from the relation [17]
+

Ti(—w,0)=0, Ci(—,0)=1, (5.3) v=a+[ "0_dx. (5.5)
aTy (+ 00.2)=0 9C (+w.1)=0 (5.4) In accordance with the analytical results (Fig. 11), de-

ox ’ T dx ’ ) ’ pending on the wave number k and the level of heat

At A =0 the reaction waves in both layers (*) are clear-
ly identical. The corresponding profiles of temperature
T, concentration C., and reaction rate ), are shown
in Fig. 13(a). Under the mild shear A4 the profiles split
[Fig. 13(b)] and the overall flame appears to be concave
relative to the fresh mixture in the + layers, where the
flame moves against the stream (+ 4), and convex in the
— layers, where the flame moves down the stream (— 4).
The reaction rate is enhanced at the concave (+) and
depleted at the convex (—) parts of the front.

At moderately strong shear one can clearly identify the
reactant C leakage through the front [Fig. 13(c)]. As 4
increases, the leakage becomes stronger [Fig. 13(d)], while
the reaction rates (), noticeably weaken, and above a
certain threshold 49 the reaction in both layers goes out
completely [Fig. 13(e)]. Thus, at least in the chosen pa-
rameter range the nonadiabatic flame may indeed be
suppressed by the background shear flow, provided its in-
tensity is high enough. Since up to the quenching point

losses h, the flame speed at the quenching point may be
lower or higher than that of a planar flame (Fig. 14). At
h =0.06 for a planar flame [ 4 =0, Fig. 13(a)] ¥ =0.57.
The planar flame goes out at h?=0.08, V9=0.43. For
h =0.06, k=0.3 the flame goes out at A7=0.194,
V?=0.42. For h =0.05, k =0.1 the flame goes out at
A9=0.297, V9=0.84. For k =0.3 and sufficiently weak
heat losses (e.g., & =0.02) the behavior of the system is
qualitatively similar to that of the adiabatic flame [17]:
above a certain critical shear 49=0.5, the flame under-
goes partial extinction, yet does not go out completely.

VI. DISCUSSION AND CONCLUDING REMARKS

The one-scale flame-flow interaction scheme discussed
in this paper appears to be quite adequate to capture the
basic aspects of flow-induced quenching. It seems plausi-
ble to suggest that the local scale independence of the La-
grangian stretch (3.7) at the quenching point found for
periodic shear flows has the same nature as the scale in-
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dependence of the mean Eulerian stretch (A7'UZ,)
occurring in turbulent systems [7-12]. Here U is the
turbulent flow quenching intensity and A is its Taylor
length scale. Yet the nearly quadratic dependence be-
tween the shear flow intensity 47 and the ‘“Taylor length
scale” A=U,,/(U, )ems=k "' (Fig. 7) is markedly
different from what is actually observed in turbulent
flames where the measurements are shown to correlate
with the estimate U, ~A [7-12]. The concrete realiza-
tion of the quenching, therefore, seems to be rather sensi-
tive to whether the flow field is isotopic and multiple
scale or not. To clarify the point the SVF formulation
still may be an appropriate framework. The issue will be
addressed in a future study.

The disappearance of the continuous SVF solutions at
A = A7 generally does not imply that the actual flame
will be quenched simultaneously along the whole inter-
face. What is found here is perhaps the incipient stage
preceding the extinction. For instance, the employed
model rules out the possibility of leakage, which seems to
be a rather characteristic feature of the near-limit com-
bustion. The observed nonexistence, therefore, may well

1.0

0.9

0.8

0.6

0.5
1
—~
Q
N—

-
O‘..
. 4
o q
. /
o
C;—'
o A
o
T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 14. Flame speed V versus shear intensity 4 at (a)
k =0.3,  =0.06 and (b) k =0.1, h =0.05.
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be merely a signal sent by the model that the nonleakage
condition becomes too restrictive and should be relaxed.
To clarify this point it would be instructive to carry out a
straightforward numerical simulation of the original
model similar to those recently undertaken for the related
reaction-diffusion systems (e.g., [14,16,27]).

The observed sensitivity of the model (4.2) and (4.3) to
the presence of even a minute heat loss is clearly nothing
but a by-product of the SVF formalism based on the large
B (activation energy) limit. In more realistic models em-
ploying large but finite 3, the phenomenology of adiabatic
and nearly adiabatic flames will hardly be distinguishable.
Note that even in the framework of the SVF asymptotics,
the flammability limit 4%e,a) of a nearly adiabatic sys-
tem (a <<1) practically coincides with the turning point
of the adiabatic system 4% e,a=0). The latter therefore
may well provide relevant information on the actual flam-
mability limit, which in principle is unfeasible without
heat losses.

The parameter e=1Bk(1—o)(1—Le™!) appearing in
Eq. (4.2) may be positive as well as negative. The corre-
sponding solutions G (%) will differ only by their signs.
On physical grounds, however, the case of positive ¢, i.e.,
Le>1, is in a sense safer. The point is that at negative ¢
(Le<1) the system (2.1)-(2.5) is susceptible to the so-
called diffusive-thermal (cellular) instability (see, e.g.,
[28]), not covered by the SVF formalism. The actual phe-
nomenology of the flame-flow interaction may thus prove
to be more complicated here than is allowed by the
present theory. Indeed, it was observed that rich hydro-
carbon mixtures (Le < 1) are more difficult to quench than
lean ones (Le > 1), with an opposite effect for H, mixtures
[5,8]. Yet, for relatively narrow domains where the flame
is intrinsically stable there seems to be quite a good corre-
lation between Eq. (4.2) and the system (2.1)-(2.5), ir-
respective of the sign of € [29].

The SVF formulation is relevant only if the Lewis
number (Le) is not too close to unity. The similarity case
Le=1 requires an independent investigation. For the
adiabatic system it has been shown that there is always a
solution for any amplitude A4, however large [30,31].
This outcome is quite understandable physically. At
Le=1, in the absence of heat losses, distortion of the
flame front does not affect its temperature and therefore
may not lead to the flame extinction. It was also found in
the above studies that W (ky), being positive on average,
may well change sign along the front, thereby exhibiting
the negative-flame-speed effect. The latter seems to be
rather characteristic for the system irrespective of its
Lewis number.

The range of validity of the sandwich model employed
in Sec. V, formally speaking, is limited to large k, permit-
ting replacement of the derivative T, by the appropriate
finite difference. Yet it appears that the obtained quasi-
one-dimensional model yields a qualitatively reasonable
phenomenology not only for large, but for moderately
small k as well [17]. It is not, however, the case for very
small k, where the interaction between the sliding nona-
diabatic layers weakens and they may become too in-
dependent to move in tandem. This is exactly what hap-
pens if one takes, for example, kK =0.05, 1 =0.06.
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